基本信息:
王艳青, 男,博士、副教授。太阳成集团tyc539的联系方式:wangyanqing@zzuli.edu.cn
硕士生导师,中国数学会会员,csiam会员,美国《mathematical reviews》评论员。主要从事流体力学navier-stokes方程及相关方程(适当)弱解正则性和守恒量的数学研究,相关结果发表在siam jma、nonlinearity、phys. d 、jde、jfaa、ccm、pjm、jmfm等期刊上。主持完成国家自然科学基金青年项目1项,目前主持在研国家自然科学基金面上项目1项和河南省优秀青年科学基金项目1项。参与省级一流课程《高等数学》建设,参与校级在线课程《复变函数与积分变换》建设。
教育背景:
2012.09--2015.06 博士 首都师范大学 应用数学
2009.09--2012.07 硕士 首都师范大学 应用数学
2005.09--2009.06 学士 河南大学 数学与应用数学
工作履历:
2022.01-至今 郑州轻工业大学 副教授
2015.06-2021.12 郑州轻工业大学 讲师
教授课程:
本科生课程:《高等数学》《复变函数与积分变换》
研究生课程:《偏微分方程》《椭圆与抛物方程》
荣誉和奖励:
1、第四届全国高校数学微课程教学设计竞赛,华中赛区二等奖、河南赛区一等奖1项;1/1,2018.
2、河南省教育厅优秀科技论文奖一等奖,1/1,2022.
主持或参加项目:
1.国家自然科学基金青年项目,11601492,不可压缩磁流体方程弱解的研究,2017.1—2019.12,18万元,结项,主持.
2.国家自然科学基金面上项目,11971446,不可压缩navier-stokes 方程适当弱解的研究,2020.1—2023.12,50万元,在研,主持.
3. 国家自然科学基金面上项目,12071113,不可压缩navier-stokes方程解的正则性, 2021.1—2024.12,51万元,在研,第二.
4. 河南省自然科学优秀青年项目,232300421077,navier-stokes 方程和 euler 方程解的正则性与能量守恒,项目批准号:2023.1—2025.12,25万元,主持.
代表性论文(*为通讯作者)
[1] wang, yanqing; wu, gang*. fractal dimension of potential singular points set in the navier–stokes equations under supercritical regularity. proceedings of the royal society of edinburgh section a: mathematics, (2023)
[2] wang, yanqing*; otto, chkhetiani. four-thirds law of energy and magnetic helicity in electron and hall magnetohydrodynamic fluids. phys. d 454 (2023), paper no. 133835.
[3] wei, wei; wang, yanqing*; ye, yulin. gagliardo-nirenberg inequalities in lorentz type spaces. j. fourier anal. appl. 29 (2023), no. 3, paper no. 35, 30 pp.
[4] liu, jitao; wang, yanqing*; ye, yulin. energy conservation of weak solutions for the incompressible euler equations via vorticity. j. differential equations 372 (2023), 254–279.
[5] wang, yanqing; ye, yulin; yu, huan*.energy conservation for the generalized surface quasi-geostrophic equation. j. math. fluid mech. 25 (2023), no. 3, 70. 35.
[6] wang, yanqing; ye, yulin*; yu, huan. the role of density in the energy conservation for the isentropic compressible euler equations. j. math. phys. 64 (2023), no. 6, paper no. 061504, 16 pp.
[7] ye, yulin; guo, peixian;wang, yanqing*. energy conservation of the compressible euler equations and the navier-stokes equations via the gradient. nonlinear anal. 230 (2023), paper no. 113219, 18 pp.
[8] wang, yanqing; jiu, quansen; wei, wei*. leray's backward self-similar solutions to the 3d navier-stokes equations in morrey spaces. siam j. math. anal. 54 (2022), no. 3, 2768–2791.
[9] ye, yuli; wang, yanqing*, weiwei. energy equality in the isentropic compressible navier-stokes equations allowing vacuum. j. differential equations. 338 (2022), 551–571.
[10] wang, yanqing*; mei, xue; huang, yike .energy equality of the 3d navier-stokes equations and generalized newtonian equations. j. math. fluid mech. 24 (2022), no. 3, paper no. 65, 10 pp.
[11] wang, yanqing; wei, wei*; wu, gang; ye, yulin. on continuation criteria for the full compressible navier-stokes equations in lorentz spaces. acta math. sci. ser. b (engl. ed.) 42 (2022), no. 2, 671–689.
[12] wang, yanqing; wei, wei*; yu, huan. ε-regularity criteria for the 3d navier-stokes equations in lorentz spaces. j. evol. equ. 21 (2021), no. 2, 1627–1650.
[13] ji, xiang; wang, yanqing*; wei, wei. new regularity criteria based on pressure or gradient of velocity in lorentz spaces for the 3d navier-stokes equations. j. math. fluid mech. 22 (2020), no. 1, paper no. 13, 8 pp.
[14] wang, yanqing; wu, gang; zhou, daoguo*. a regularity criterion at one scale without pressure for suitable weak solutions to the navier-stokes equations. j. differential equations 267 (2019), no. 8, 4673–4704.
[15] he, cheng; wang, yanqing*; zhou, daoguo. new ε-regularity criteria of suitable weak solutions of the 3d navier–stokes equations at one scale. j. nonlinear sci. 29 (2019), no. 6, 2681–2698.
[16] wang, yanqing*; wu, gang.on the box-counting dimension of the potential singular set for suitable weak solutions to the 3d navier-stokes equations. nonlinearity 30 (2017), no. 5, 1762–1772.
[17] ren, wei; wang, yanqing*; wu, gang. partial regularity of suitable weak solutions to the multi-dimensional generalized magnetohydrodynamics equations. commun. contemp. math. 18 (2016), no. 6, 1650018, 38 pp.
[18] jiu, quansen; wang, yanqing*; wu, gang. partial regularity of the suitable weak solutions to the multi-dimensional incompressible boussinesq equations.j. dynam. differential equations 28 (2016), no. 2, 567–591.
[19] wang, yanqing*; wu, gang. a unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary navier–stokes equations. j. differentialequations 256 (2014)1224–1249.
[20] jiu, quansen; wang, yanqing*. on possible time singular points and eventual regularity ofweak solutions to the fractional navier-stokes equations. dynamics of pde, 11(2014), no.4, 321–343.